2504^2=x(x+8)

Simple and best practice solution for 2504^2=x(x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2504^2=x(x+8) equation:



2504^2=x(x+8)
We move all terms to the left:
2504^2-(x(x+8))=0
We add all the numbers together, and all the variables
-(x(x+8))+6270016=0
We calculate terms in parentheses: -(x(x+8)), so:
x(x+8)
We multiply parentheses
x^2+8x
Back to the equation:
-(x^2+8x)
We get rid of parentheses
-x^2-8x+6270016=0
We add all the numbers together, and all the variables
-1x^2-8x+6270016=0
a = -1; b = -8; c = +6270016;
Δ = b2-4ac
Δ = -82-4·(-1)·6270016
Δ = 25080128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25080128}=\sqrt{64*391877}=\sqrt{64}*\sqrt{391877}=8\sqrt{391877}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{391877}}{2*-1}=\frac{8-8\sqrt{391877}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{391877}}{2*-1}=\frac{8+8\sqrt{391877}}{-2} $

See similar equations:

| 6x+56=2x+20 | | x+2.7=10 | | (2x-18)=(3x-12) | | X^3-5x^2-3x=-15 | | 3(x+2)=(2x-1)4 | | t+-13/20=17/20 | | 37x+x-27=78 | | 6x^2+17x+6=1 | | 3z-1/2=10 | | 18x+5=21x-7 | | 6-3t^2=0 | | 4n^2=-7 | | 8x-10+10x=-3+32= | | F(x)=10(0.8)x | | 17/20=t+-13/20 | | 10/y=11/7 | | 5(x-2)=(-x+2)3 | | 5x+10=2x-17 | | 156=-5x+7(-6x-18) | | z/4+2=−58 | | 3y+3=20 | | z4+2=−58 | | 2x3-3x2+5=0 | | x*15=x/3,5 | | 2(5x-5)+x=100 | | k/8+4=15 | | -12x+37=-10x-15-6x | | 2×-3y+10=0 | | -4y-24=-8(y+8) | | 16x+20=21x | | 3(x-7)=5x-5 | | 2(5x-3)+x=137 |

Equations solver categories